If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+112Y+8
We move all terms to the left:
-(-16Y^2+112Y+8)=0
We get rid of parentheses
16Y^2-112Y-8=0
a = 16; b = -112; c = -8;
Δ = b2-4ac
Δ = -1122-4·16·(-8)
Δ = 13056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13056}=\sqrt{256*51}=\sqrt{256}*\sqrt{51}=16\sqrt{51}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-16\sqrt{51}}{2*16}=\frac{112-16\sqrt{51}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+16\sqrt{51}}{2*16}=\frac{112+16\sqrt{51}}{32} $
| 4(w+71)−-19=47 | | 1/3x-3/4=7 | | 11b=528 | | 7d−-6d−6d=14 | | 2+9x=2x-5 | | 2x+14=-24+3x | | Y+3=3-y | | 5/9=10/n | | 36+-4c-3c=22 | | L=m2 | | -2x/5-8=12 | | 5(2x=1=50 | | 28.5x=+18=16.5x+20 | | 23=51-h | | 96=6(d+5) | | b-75=8 | | 5x+12=74 | | 2(v+8)-38=16 | | -34=8x | | 4y-4=-4(y+5) | | 4y-4=-4(y=5) | | -17=4x | | 2=5-h | | 9(u-5)=-9u+45 | | 2=5−h | | 10x=100*2 | | 92+58+3w=180 | | 6x^2-7=153 | | 19.5+.25x=29.5 | | 10-x=230 | | 8b–2b=54 | | X+8+4x-10=90 |